nucleus: DNA & chromosomes

chapter 5

nuclear envelope
- nuclear membrane
 - actually two membranes
 - continuous with RER
 - nuclear lamina
 - intermediate filaments
 - lamins

nuclear membrane
- nuclear pore complex
 - gateway for proteins and RNAs
 - composed of nucleoporins
 - 15-30x as big as ribosome
 - 8 copies of each element
 - constantly changing

nuclear organization
- nuclear structure
 - nuclear envelope
 - nucleoplasm
 - nuclear matrix
 - nucleolus

nuclear envelope
- nuclear membrane
 - actually two membranes
 - continuous with RER
 - nuclear lamina
 - intermediate filaments
 - lamins

nuclear pore complex
- gateway for proteins and RNAs
- composed of nucleoporins
- 15-30x as big as ribosome
- 8 copies of each element
- constantly changing
nuclear membrane

- nuclear pore complex
 - central scaffold
 - central channel
 - nucleoporin lining
 - FG-repeat domains
 - proteins destined for the nucleus contain specific sequence of amino acids (NLS)

- transport of proteins
 1. protein with NLS binds to importin
 2. complex associates with cytoplasmic filament
 3. complex moves through pore
 4. interacts with Ran-GTP, dissociates
 5. importin β transported back to cytoplasm

nuclear matrix

- nuclear matrix
 - insoluble fibrillar network
 - may serve to organize chromatin
 - may be involved in maintenance of nuclear shape
 - probably not a static structure

nuclear organization

- chromosome territories
 - chromatin fibers not randomly dispersed
 - transcription factories
 - different loci on different chromosomes may interact during transcription
 - speckles
 - mRNA processing machinery
 - 20-50 irregular domains
 - dynamic
nuclear organization

- **nucleolus**
 - may be 1 or more (disassemble during mitosis)
 - not membrane bound
 - rRNA transcription (result from rRNA processing)
 - ribosome assembly
 - 4 types of RNA
 - 5S, 5.8S, 18S, 28S (svedberg units)
 - used to form large and small ribosomal subunits
- 3 regions
 - fibrillar center
 - dense fibrillar component
 - granular component

DNA structure

- **nucleotides**
 - two types of nitrogenous bases
 - pyrimidines
 - thymine
 - cytosine
 - purines
 - guanine
 - adenine
 - Base composition rules
 - pyrimidines = purines
 - A=T, G=C
 - A+T ≠ G+C
DNA structure

- Watson and Crick proposal
 - 2 strands
 - strands spiral dextrally
 - strands are antiparallel
 - sugar-phosphate chain
 - bases make up rungs
 - bases held together by hydrogen bonds
 - distance from phosphorus to phosphorus atom = 1nm

- pyrimidines pair with purines
 - C-G, A-T
- minor and major groove
 - allow place for proteins to sit
 - makes on complete turn every 10 residues
- strands are complementary

Genetic material

- three functions required of genetic material
 - must contain info that codes for heritable traits
 - must contain info that directs assembly of proteins
 - must contain info that directs duplication

History

- chromosomes
 - 1880s
 - Walther Flemming
 - noted thread-like material in nucleus
 - Theodore Boveri
 - noted that chromosomes have qualitative differences
 - Edouard van Beneden
 - half the chromosomes in each gamete
 - Oscar Hertvig
 - August Weismann
 - described meiosis and reduction division
 - 1903 - Walter Sutton
chromosome structure

- mitotic chromosomes
 - centromere
 - site of obvious constriction
 - satellite DNA
 - binds to centromeric proteins
 - CENP-A
 - helps assemble the kinetochore
 - sequence probably not important in function
 - spindle fibers attach to kinetochore

- mitotic chromosomes
 - distinct and predictable shape
 - length and centromere position
 - karyotype
 - telomeres
 - repeated sequences at the ends of each DNA molecule + DNA binding proteins
 - sequence conserved for vertebrates
 - TTAGGG -- about 500-5000x repeated
 - telomeres normally shrink
 - telomerase

supercoiling

- DNA can exist in supercoiled state
 - negatively supercoiled (plectonemic)
 - occurs when underwound
 - positively supercoiled (solenoidal)
 - occurs when overwound

- topoisomerases
 - topoisomerase I
 - topoisomerase II

chromatin

- organization of chromatin
 - nucleosomes
 - organized by histones
 - 5 classes
 - highly conserved
 - histone octamer
 - 2 copies of H2A, H2B, H3 and H4
 - H1 - linker histone
 - nucleosomes arranged like beads on a string
chromatin

- higher-level chromatin structure
 - 30nm fibers
 - nucleosomes bundled into larger fibers
 - not clear how 30nm fibers form
 - looped domains
 - 30nm filaments looped
 - connected to matrix
 - topoisomerase II

- chromatin-remodeling complexes
- euchromatin
 - disperses after mitotic division
- heterochromatin
 - remains compacted
 - little transcription
 - two classes
 - constitutive heterochromatin
 - permanently compacted
 - facultative heterochromatin
 - inactivated

reannealing

- denaturation
- renaturation
 - nucleic acid hybridization
 - rate of renaturation
 - for bacteria and viruses
 - related to complexity of genome
 - all sequences present at roughly same concentration
 - for eukaryotes
 - more complex renaturation curves

- highly repeated DNA sequences (1-10% of DNA)
 - satellite DNAs
 - minisatellite DNAs
 - microsatellite DNAs

genome structure
genome structure

- highly repeated DNA sequences (1-10% of DNA)
 - satellite DNAs
 - minisatellite DNAs
 - microsatellite DNAs
- moderately repeated DNA sequences (20-80% of DNA)
 - repeated coding DNAs
 - repeated non-coding DNAs
- non-repeated sequences

genomic stability

- polyploidy
 - in plants - hybridization event
 - in animals - duplication in zygote or diploid gametes
 - sympatric speciation
 - can result in many copies of chromosomes